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a b s t r a c t

An analytical study for free vibration of naturally curved and twisted beams with

uniform cross-sectional shapes is carried out using spatial curved beam theory based on

the Washizu’s static model. In the governing equations of motion of the beams, all

displacement functions and the generalized warping coordinate are defined at the

torsion-related warping are included in the proposed model. Explicit analytical

expressions are derived for the vibrating mode shapes of a curved, bending-torsional-

shearing coupled beam under clamped–clamped boundary condition with the help of

symbolic computing package Mathematica, and a process of searching is used to

determine the natural frequencies. Comparisons of the present results with the FEM

results using beam elements in ANSYS code show good accuracy in computation and

validity of the model. Further, the present model is used for cylindrical helical springs

with circular cross-section fixed at both ends, and the results indicate that the natural

frequencies agree well with the theoretical and experimental results available.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Naturally curved and twisted beams have been widely used in mechanical, civil and aeronautical engineering. For
instance, blades and flexible space structures are manufactured as naturally curved and twisted beam-type structures in
the form of space curves. The helical spring is another example of a beam widely used in engineering, the axis of which is
commonly curved and twisted.

Within the framework of linear beam theories, various assumptions are made in deriving the set of equations describing
the static [1–7] or dynamic [8–20] behavior of spatially curved and twisted rods. The known sets of dynamic equations for
spatially curved rods have been used in determination on natural frequencies [9,14,15,18–20] and analysis of harmonic
wave propagation [10–12,17]. So far there has been comparatively few research on effect of the warping by reducing the
original three-dimensional dynamic problem of beams to one-dimensional problem. An assumption relating a generalized
warping coordinate with the rate of twist of the beam has been introduced in some studies [21,22]. Recently, the
assumption is also used for free vibration of anisotropic composite thin-walled beams with closed cross-section [23].

Based on the assumption as just mentioned above, the main purpose of this paper lies in an analytical formulation and
evaluation for free vibration of naturally curved and twisted beams using the resulting governing equations based on the
Washizu’s static model [1]. The explicit analytical expressions are derived for the vibrating mode shapes of naturally
curved and twisted beams under clamped–clamped boundary condition, with help of the symbolic computing package
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Mathematica. A process of searching is adopted to determine natural frequencies and the mode shapes for the natural
vibration are obtained using the resulting analytical expressions. In numerical examples, comparisons of the present
results with the FEM results using beam elements in ANSYS code show good accuracy in computation and validity
of the model. Further, the present model is used for analysis of cylindrical helical springs with circular cross-section fixed
at both ends. The results indicate that the natural frequencies agree well with the theoretical and experimental results
available.
2. Fundamental governing equations

It is assumed that the locus of the cross-sectional centroid of the beam is a continuum curve l in space. The tangential,
normal and bi-normal unit vectors of the curve are t, n and b, respectively. The Frenet–Serret formulae, for a smooth curve,
are [1]:

t0 ¼ k1n; n0 ¼ � k1tþk2b; b0 ¼ � k2n; (1)

where superscript prime denotes the derivative with respect to s. s, k1 and k2 are arc coordinate, curvature and torsion of
the curve, respectively.

We introduce x and Z directions in coincidence with the principal axes through the centroid O1, as shown in Fig. 1. The
angle between the x axis and normal n is represented by y, which is generally a function of s. If the unit vectors of O1x and
O1Z are represented by ix and iZ, then

ix ¼ n cosyþb siny; iZ ¼ � n sinyþb cosy: (2)

From Eqs. (1) the following expressions are obtained:

t0 ¼ kZix � kxiZ; ix
0 ¼ � kZtþksiZ; iZ

0 ¼ kxt� ksix; (3)

where

kx ¼ k1 siny; kZ ¼ k1 cosy; ks ¼ k2þy0: (4)

Based on the assumption that the cross sections of the beam do not deform in its own plane, but is free to
warp out of the plane, the dynamic displacement of the beam consisting of stretching, bending and torsion is expressed
by

u¼WtþUixþViZ; (5)

in which

W ¼ usðs; tÞþZjxðs; tÞ � xjZðs; tÞþaðs; tÞwðx;ZÞ;

U ¼ uxðs; tÞ � Zjsðs; tÞ;

V ¼ uZðs; tÞþxjsðs; tÞ; (6)

where three displacement components of the cross section in the s, x and Z directions are fully represented by six rigid
body modes, i.e., three translational portions by usðsÞ, uxðsÞ, uZðsÞ, together with three rotational ones by jsðsÞ, jxðsÞ and
jZðsÞ, respectively. The non-classical influences relevant to the beam are those due to transverse shear deformations and
torsion-related warping. The wðx;ZÞ is the warping function of Saint-Venant’s torsion of a cylindrical shaft which has the
same cross section as the beam under consideration. The a(s) is introduced as a generalized warping coordinate which is
assumed to have a prescribed relation with the rate of twist of the beam [21–23]

aðs; tÞ ¼js
0 ðs; tÞ (7)
Fig. 1. Geometry of the beam.



ARTICLE IN PRESS

A.M. Yu et al. / Journal of Sound and Vibration 329 (2010) 1376–13891378
According to Eq. (7), the strain-displacement relation described in Ref. [1] becomes

ess ¼ esþZox � xoZþwjs
00 þks

qw
qx

� �
Z� qw

qZ

� �
x

� �
js
0 ;

2esx ¼ Gxex � Zosþ
qw
qx

� �
þkZw

� �
js
0 ;

2esZ ¼ GZeZþxosþ
qw
qZ

� �
� kxw

� �
js
0 ; (8)

where ess, esx and esZ are the axial and shear strain components, respectively. The Gx and GZ are shape factors depending on
the beam sections [24], and es, ex, eZ, os, ox, oZ are generalized strains written by

es ¼ us
0 � kZuxþkxuZ; ex ¼ ux

0 þkZus � ksuZ �jZ;

eZ ¼ uZ
0 � kxusþksuxþjx; os ¼js

0 � kZjxþkxjZ;

ox ¼jx
0 þkZjs � ksjZ; oZ ¼jZ

0 � kxjsþksjx: (9)

In above derivation the initial curvatures of the beams are assumed to be moderate, to guarantee that value of the
determinant of the metric tensor in the curvilinear coordinate system takes one, i.e., g ¼ ð1� xkZþZkxÞ

2
� 1. This

assumption is suitable for most practical applications.
For the case of isotropic beam under consideration, the stress components are

ss ¼ Eess; tsx ¼ 2Gesx; tsZ ¼ 2GesZ; (10)

where E is the modulus of elasticity and G is the shear modulus of the material, respectively. The remaining components,
sx, sZ and txZ, are very small and neglected in the stress–strain relations.

The resultant forces and moments on a cross section of the beam are as follows

Qs ¼

Z Z
ss dxdZ; Ms ¼

Z Z
ðtsZx� tsxZÞdxdZ;

Qx ¼

Z Z
tsx dxdZ; Mx ¼

Z Z
ssZdxdZ;

QZ ¼

Z Z
tsZ dxdZ; MZ ¼ �

Z Z
ssxdxdZ; (11)

where Qs is the axial force, Qx and QZ are the shear forces, Ms is the twisting moment, Mx and MZ are the bending moments,
as shown in Fig. 2.

The external force and moments per unit length on the axis of the beam are indicated by p and m as

p¼ pstþpxixþpZiZ; m¼mstþmxixþmZiZ: (12)

Using a generalized variational functional for naturally curved and twisted beams and Eq. (7), the equations of motion
can be derived in the following Z Z

rdxdZ €ux ¼ Qx
0 � ksQZþkZQsþpx;

Z Z
rdxdZ €uZ ¼ QZ

0 � kxQsþksQxþpZ;

Z Z
rdxdZ €usþ

Z Z
rwdxdZ €js

0 ¼Qs
0 � kZQxþkxQZþps;
Fig. 2. Stress resultants developed on a typical beam element.
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Z Z
rZ2 dxdZ €jx �

Z Z
rxZdxdZ €jZþ

Z Z
rZwdxdZ €js

0 ¼Mx
0 � ksMZþkZMs � QZþmx;

Z Z
rx2 dxdZ €jZ �

Z Z
rxZdxdZ €jx �

Z Z
rxwdxdZ €js

0 ¼MZ
0 � kxMsþksMxþQxþmZ;

�

Z Z
rw2 dxdZ €js

00 �

Z Z
rwdxdZ €us

0

�

Z Z
rZwdxdZ €jx

0 þ

Z Z
rxwdxdZ €jZ

0 þ

Z Z
rðx2
þZ2ÞdxdZ €js ¼Ms

0 � kZMxþkxMZþms; (13)

where two dots over the quantity denote the second partial derivative with respect to time t, and r is the mass density. We
note that if the beams are assumed to have a double-symmetric cross section, Eq. (13) reduces to

m €ux ¼Qx
0 � ksQZþkZQsþpx;

m €uZ ¼QZ
0 � kxQsþksQxþpZ;

m €us ¼Qs
0 � kZQxþkxQZþps;

rIx €jx ¼Mx
0 � ksMZþkZMs � QZþmx;

rIZ €jZ ¼MZ
0 � kxMsþksMxþQxþmZ;

�rG €js
00 þrIp €js ¼Ms

0 � kZMxþkxMZþms; (14)

in which

G¼
Z Z

w2 dxdZ; (15)

where m¼ rA is the mass per unit length of the beam, A, Ix, IZ and IP are the cross-sectional area, the second moments of
area with respect to the normal axis and to the binormal axis, and the torsional moment of inertia of the cross-section,
respectively.

3. Analysis of a curved beam with the uniform equilateral triangle cross section

To verify the theoretical formulations in previous section, a curved beam with the uniform equilateral triangle cross
section is chosen, as shown in Fig. 3, as a model in computation. For the structure, y, ks and kx in Eq. (3) all take zero, and kZ
is 1/R.

First, we consider out-of-plane free vibration of the beam. In the case, corresponding three equations, the second,
the fourth and the sixth equations in Eq. (13), need to be considered. These equations are uncoupled from the
rest of the system, and can be expressed in terms of only the three independent displacement functions ûZ, ĵx and ĵs

below

rA €uZðs; tÞ ¼ GZGAuZ
00 ðs; tÞþGZGAjx

0 ðs; tÞ;

�rIx €jxðs; tÞ ¼ GZGAuZ
0 ðs; tÞþðk2

ZGIPþGZGAÞjxðs; tÞ � EIxjx
00 ðs; tÞ � kZðEIxþGIPÞjs

0 ðs; tÞþkZGD1js
0 ðs; tÞ;

rIP €jsðs; tÞ � rG €js
00 ðs; tÞ ¼ � kZðEIxþGIPÞjx

0 ðs; tÞþkZGD1jx
0 ðs; tÞ � EGj0000s ðs; tÞþGIPjs

00 ðs; tÞ � 2GD1js
00 ðs; tÞ

� Ljs
00 ðs; tÞ � k2

ZEIxjsðs; tÞ: (16)

in which

D1 ¼

Z Z
qw
qx

� �
Z� qw

qZ

� �
x

� �
dxdZ; L¼ � GðD1þk2

ZGÞ:

For the harmonic vibration with frequency o, introduce the following dimensionless quantities

lB1 ¼
R2ro2

G
; lD1 ¼

R2GA

EIx
; lD2 ¼

R2ðk2
ZGIPþGAÞ

EIx
; lD3 ¼

R2ro2

E
;

lD4 ¼
EIxþGIP

EIx
; lD5 ¼

GD1

EIx
; lF1 ¼

R2ðEIxþGIPÞ

EG
; lF2 ¼

R2GD1

EG
;

lF3 ¼
R2GIP

EG
; lF4 ¼

2R2GD1

EG
; lF5 ¼

R2L

EG
; lF6 ¼

R2ro2

E
;
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Fig. 3. A curved beam with the uniform equilateral triangle cross section.
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lF7 ¼
R2EIx

EG
; lF8 ¼

R4ImPo2

EG
; (17)

then Eq. (16) simplifies into

ðD2þlB1ÞûZðbÞþRDĵxðbÞ ¼ 0;

lD1DûZðbÞ � RðD2 � lD2þlD3ÞĵxðbÞ � RðlD4 � lD5ÞDĵsðbÞ ¼ 0;

ðlF1 � lF2ÞDĵxðbÞþ½D
4 � ðlF3 � lF4 � lF5 � lF6ÞD

2þðlF7 � lF8Þ�ĵsðbÞ ¼ 0; (18)

where the differential operator

D¼ R
d

ds
¼

d

db
;

and ûZðbÞ, ĵxðbÞ and ĵsðbÞ represent translation in the bi-normal direction, bending rotation about the x-axis and torsional
rotation about the s-axis, respectively. For the clamped boundary conditions, there are

ûZ ¼ ĵx ¼ ĵs ¼ ĵs
0 ¼ 0; at b¼ 0 and b¼ p: (19)

Eliminating any two variables of ûZ, ĵx and ĵs in Eq. (18), one equation concerning a remaining variable can be derived as

fD8þR6D6þR4D4þR2D2þR0gX ¼ 0; (20)where

X ¼ û ; ĵ or ĵ
Z x s

R6 ¼ lB1þlD1 � lD2þlD3þlF3 � lF4 � lF5 � lF6;

R4 ¼ ðlD4 � lD5ÞðlF1 � lF2ÞþðlD1 � lD2þlD3ÞðlF3 � lF4 � lF5 � lF6Þ;

� lB1ðlD2 � lD3 � lF3þlF4þlF5þlF6Þ � lF7þlF8;

R2 ¼ � ðlD1 � lD2þlD3ÞðlF7 � lF8ÞþlB1½ðlD4 � lD5ÞðlF1 � lF2Þ � ðlD2 � lD3ÞðlF3 � lF4 � lF5 � lF6Þ � lF7þlF8�;

R0 ¼ lB1ðlD2 � lD3ÞðlF7 � lF8Þ: (21)

For the form of non-trivial solution for the eighth-order differential equation (20) by X=erb, a corresponding
characteristic equation is obtained as

r8þR6r6þR4r4þR2r2þR0 ¼ 0 (22)

The eight roots of the above equation can be real or complex depending on the values of coefficients R0, R2, R4 and R6.
Within the practical range, if there are N real roots ri ði¼ 1; . . . ;NÞ and 2M conjugate complex roots rj ¼ aj7 igj, ðj¼ 1; . . . ;MÞ
the solutions of ûZðbÞ, ĵxðbÞ, and ĵsðbÞ can be written as

ûZðbÞ ¼
XN

i ¼ 1

Ai � e
ribþ

XM
j ¼ 1

eajb½A1j cosðgjbÞþA2j sinðgjbÞ�;

ĵxðbÞ ¼
XN

i ¼ 1

Bi � e
ribþ

XM
j ¼ 1

eajb½B1j cosðgjbÞþB2j sinðgjbÞ�;
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ĵsðbÞ ¼
XN

i ¼ 1

Ci � e
ribþ

XM
j ¼ 1

eajb½C1j cosðgjbÞþC2j sinðgjbÞ�; (23)

where Nþ2M¼ 8, and

Bi ¼ xiAi; Ci ¼ ziAi;

xi ¼
�ðr2

i þlB1Þ

Rri
; zi ¼

lD1r2
i þðr

2
i þlB1Þðr

2
i � lD2þlD3Þ

Rr2
i ðlD4 � lD5Þ

; ði¼ 1; . . . ;NÞ

B1j ¼ x11jA1jþx12jA2j; B2j ¼ x21jA1jþx22jA2j;

x11j ¼ � jW5j W2j W3j W4jj=Dj; x12j ¼ � jW6j W2j W3j W4jj=Dj;

x21j ¼ � jW1j W5j W3j W4jj=Dj; x22j ¼ � jW1j W6j W3j W4jj=Dj;

C1j ¼ z11jA1jþz12jA2j; C2j ¼ z21jA1jþz22jA2j;

z11j ¼ � jW1j W2j W5j W4jj=Dj; z12j ¼ � jW1j W2j W6j W4jj=Dj;

z21j ¼ � jW1j W2j W3j W5jj=Dj; z22j ¼ � jW1j W2j W3j W6jj=Dj;

Dj ¼ jW1j W2j W3j W4jj; ðj¼ 1; . . . ;MÞ

and the column vectors are defined as

W1j ¼ fRaj � Rgj � Ra2
j þRg2

j þRlD2 � RlD3 2Rajgjg
T;

W2j ¼ fRgj Raj � 2Rajgj � Ra2
j þRg2

j þRlD2 � RlD3g
T;

W3j ¼ f0 0 Rajð�lD4þlD5Þ Rgjð�lD4þlD5Þg
T;

W4j ¼ f0 0 RgjðlD4 � lD5Þ Rajð�lD4þlD5Þg
T;

W5j ¼ fa2
j � g

2
j þlB1 � 2ajgj lD1aj � lD1gjg

T;

W6j ¼ f2ajgj a2
j � g

2
j þlB1 lD1gj lD1ajg

T:

Substituting Eq. (23) into (19) yields a set of eight homogeneous algebraic equations

PðxÞA¼ 0; (24)

where PðxÞ is a 8�8 matrix and A is a 8�1 vector relating to Ai, A1j and A2j. Eq. (24) has non-trivial solution for A when
the determinant of PðxÞ vanishes, namely,

detPðxÞ ¼ 0; (25)

which can be used to determine the natural frequencies using a simple automated Muller root search method [25]. Once
the frequencies are given, the corresponding mode shapes are evaluated using Eq. (23).

In computation the material and geometry properties of the beam are given as follows

E¼ 200 GPa; G¼ 76:92 GPa; r¼ 7840 kg=m3; b¼ 0:02 m; A¼ 2:078� 10�3 m2;

R¼ 0:48 m; Ix ¼ IZ ¼ 4:1569� 10�7 m4; Ip ¼ 8:3138� 10�7 m4; w¼ � 1

6b
ðZ3 � 3x2ZÞ:

Change in detPðoÞ with frequency f ¼o=2p measured in Hz is shown in Fig. 4. Comparisons of the first four natural
frequencies with FEM results for out-of-plane free vibration of the beam are presented in Table 1 while the corresponding
mode shapes are shown in Fig. 5. In FEM analysis, BEAM4 beam element in ANASYS code is chosen, and numbers of
elements and nodes are 400 and 401, respectively. The beam element does not allow the warping in the code. It is observed
from the table that the corresponding results for present model with warping ignored coincide with the data from FEM. If
the warping is included, the frequencies become lower except the first frequency. The resulting increase in the first
frequency is due to the introduction of the relation, as shown in Eq. (7), between the generalized warping coordinate and
the rate of twist of the beam. The computational results from Fig. 5 indicate that there is a phenomenon of high frequency
oscillations for mode shapes corresponding to a small wavy curve segment, and the amplitude of the oscillations is very
small. The effect of the relation on induced error is shown to be weak, and the assumption is thus still valid for practical
engineering. It can be observed that in preceding parts, for in-plane free vibration of the beam with triangle cross section as
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well as for free vibration of the cylindrical helical spring with the circular cross-section (see Section 4), the above relation is
not adopted naturally due to no warping. The oscillations will disappear automatically.

Next, let us consider the in-plane free vibration of the beam. Similarly, only the first, the third and the fifth equations in
Eq. (13) need to be solved. For the case, effect of warping disappears automatically. Accordingly, in the model, a¼ 0 and the
assumption aðs; tÞ ¼js

0 ðs; tÞ is abandoned. The mode shapes including shear deformation are shown in Fig. 6. The
corresponding comparisons for first four natural frequencies are illustrated in Table 2. A good agreement can be seen
between the present model and the FEM results.

4. Analysis of cylindrical helical springs

As the spatially curved system, cylindrical helical spring with the circular cross-section is taken as model in
computation. In Eq. (14), let kx ¼ 0, w¼ 0 and p¼m¼ 0, the corresponding equations are expressed as

rA €ux ¼ GxGAux
00 � ksGxGAuZ

0 � ksGZGAuZ
0 þkZAðEþGxGÞus

0 � GxGAjZ
0 � ðk2

s GZGAþk2
ZEAÞux � ksGZGAjx;

rA €uZ ¼ GZGAuZ
00 þksGxGAux

0 þksGZGAux
0 þGZGAjx

0 � k2
s GxGAuZþkskZGxGAus � ksGxGAjZ;

rA €us ¼ EAus
00 � kZAðEþGxGÞux

0 þkskZGxGAuZ � k2
ZGxGAusþkZGxGAjZ;

Imx €jx ¼ EIxxjx
00 � GZGAuZ

0 � ksEIPjZ
0 þkZðEIxxþGIPÞjs

0 � ksGZGAux � ðGZGAþk2
ZGIPþk2

s EIZZÞjx;

ImZ €jZ ¼ EIZZjZ
00 þGxGAux

0 þksEIPjx
0 � ksGxGAuZþkZGxGAus � ðGxGAþk2

s EIxxÞjZþkZksEIxxjs;
Fig. 4. Variation of detPðoÞ with frequency f: (a) the first and second natural frequencies; (b) The third and fourth natural frequencies.

Table 1
Comparisons of natural frequencies for out-of-plane free vibration (unit: Hz).

Mode FEM Present (warping ignored) Present (warping included)

1 89.32 89.31 92.05

2 255.50 255.46 254.94

3 530.58 530.41 524.50

4 898.01 897.53 887.84
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Fig. 5. Natural frequencies and mode shapes for out-of-plane free vibration of a curved beam: (a) first mode; (b) second mode; (c) third mode; and (d)

fourth mode.

A.M. Yu et al. / Journal of Sound and Vibration 329 (2010) 1376–1389 1383
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Fig. 5. (Continued)

A.M. Yu et al. / Journal of Sound and Vibration 329 (2010) 1376–13891384
ImP €js ¼ GIPjs
00 � kZðEIxxþGIPÞjx

0 þkskZEIxxjZ � k2
ZEIxxjs: (26)

The parametric relationships for a cylindrical helix are (see Fig. 7)

h¼ R tana; c¼ ðR2þh2Þ
1=2; ks ¼ h=c2 ¼ ð1=RÞsina cosa;
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Fig. 6. Natural frequencies and mode shapes for in-plane free vibration of a curved beam: (a) first mode; (b) second mode; (c) third mode; and (d) fourth

mode.

A.M. Yu et al. / Journal of Sound and Vibration 329 (2010) 1376–1389 1385
kx ¼ 0; kZ ¼ R=c2 ¼ ð1=RÞcos2 a; ds¼ cdb; (27)

where h is the step for unit angle of the helix, R is the centerline radius of the helix, a is the pitch angle and db is the
infinitesimal angular element.

For a helical spring fixed at both ends, material and geometrical properties are chosen as: r¼ 7900 kg=m3,
E¼ 2:06� 1011 N=m2, D¼ 2R¼ 10 mm, n¼ 7:6, m¼ 0:3, d¼ 1 mm, a¼ 8:57443, Gx ¼ GZ ¼ 1=an ¼ 1=ab (an ¼ ab ¼ 1:1 for the
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Fig. 6. (Continued)

A.M. Yu et al. / Journal of Sound and Vibration 329 (2010) 1376–13891386
solid circular section [20]). Here n is the number of turns of the helix, m is Poisson’s ratio and d is the wire diameter.
Comparisons of the present results with both the experimental data by Mottershead [26] and the numerical results by
Yildirim using the transfer matrix method (TMM) [27] are presented in Table 3.

As a second application of the spring with circular cross-sections having both ends fixed, a model used in Pietra and
Valle [28] is considered. Material and geometrical properties are r¼ 7900 kg=m3, E¼ 2:1� 1011 N=m2, m¼ 0:3, d¼ 6 mm,
2R¼ 50 mm, n¼ 6, a¼ 5:13843. A comparison of natural frequencies is given in Table 4. It is clear that the results of present
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Table 2
Comparisons of natural frequencies for in-plane free vibration (unit: Hz).

Mode FEM Present Error (%)

1 212.62 212.58 0.02

2 457.17 457.02 0.03

3 841.64 841.19 0.05

4 1210.00 1208.83 0.10

Fig. 7. Geometry of a typical cylindrical helical spring.

Table 3
Comparison of natural frequencies of the spring (unit: Hz).

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11

Experimental [26] 391.0 391.0 459.0 528.0 878.0 878.0 906.0 – 1282.0 1386.0 –

TMM [27] 393.5 395.9 462.8 525.5 864.0 876.8 914.3 1037.0 1310.5 1363.8 1395.1

Present 393.5 396.1 462.9 525.7 863.8 877.0 913.8 1037.5 1310.7 1364.6 1395.8
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model agree well with those from other theories and experiment [27–30], which shows that the model proposed is
accurate enough for the free vibration of such engineering structures.
5. Conclusions

Based on the Washizu’s static curved beam theory, an analytical evaluation on free vibration of naturally curved and
twisted beams with uniform cross-sectional shapes is presented in this paper. In the governing equations of motion of
the beams, all displacement functions and the generalized warping coordinate are defined at the centroid axis and also the
effects of rotary inertia, transverse shear deformations and torsion-related warping are included in the proposed model.
An assumption relating a generalized warping coordinate with the rate of twist of the beam is introduced to solve the
governing equations. Explicit analytical expressions are derived for the vibrating mode shapes of a curved, bending-
torsional-shearing coupled beam and cylindrical helical springs under clamped–clamped boundary condition, and a
process of searching is used to evaluate natural frequencies. The use of the assumption can lead to a phenomenon of high
frequency oscillations for mode shapes, but the amplitude of the oscillations is very small. Comparisons of the present
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Table 4
Comparison of natural frequencies of the spring (unit: Hz).

f (Hz) Present Experiment Theory

[28] [27] [28] [29] [30]

1 140.5 141.0 140.6 141.0 141.0 141.3

2 161.1 161.0 161.1 161.0 161.0 161.1

3 177.8 – 177.8 – – 178.3

4 181.2 – 181.2 – – 181.7

5 274.7 275.0 274.7 275.0 282.0 275.7

6 305.9 300.0 305.9 313.0 322.0 306.8

7 308.1 – 308.1 – – 308.7

8 319.2 – 319.2 – – 320.1

9 391.8 392.0 391.8 389.0 423.0 392.7

10 430.6 433.0 430.6 443.0 483.0 431.4

11 436.3 – 436.3 – – 436.6

12 444.5 – 444.5 – – 446.2
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results with the FEM results from ANSYS beam element, the theoretical and experimental results available show good
accuracy in computation and validity of the model proposed.
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